

The Intelligent Internet of Things with Axeda
and Oracle Java Embedded
by Eric J. Bruno, Oracle
Jeremy Kornwitz, Phil Lombardi, and Mats Samuelsson, Axeda
O R A C L E W H I T E P A P E R | J U N E 2 0 1 4

THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND ORACLE JAVA EMBEDDED

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND ORACLE JAVA EMBEDDED

Table of Contents

Disclaimer 1

The Technical Requirements of the Internet of Things 1

Cloud-Based Internet of Things 2

Java and the Internet of Things 3

Java and Native Development 3

Java ME and the Internet of Things 3

What’s New in Java ME 8 4

Java ME 8 Profile Details 4

End-to-End Connectivity and Enterprise Integration 5

Java SE Embedded 8 and the Internet of Things 6

Axeda Java ME 8 Toolkit Library and Agent Solutions 8

Getting Started with Java and Axeda 9

1 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND ORACLE JAVA EMBEDDED

The Technical Requirements of the Internet of Things
Wikipedia defines the Internet of Things (IoT) as: “The next wave of technology evolution where billions of devices
have a virtual representation in the Internet. It is a world where devices communicate with each other, the
environment and users, a world where appropriate information can be accessed in the right quantity and condition,
at the right time and the right place.” Although IoT often relies upon the use of embedded devices, distributed
geographically and communicating via the Internet Protocol (IP) to help people bridge the online and physical
worlds, it’s not restricted to this. We’re just now beginning to see the potential value of IoT, and its forms and uses
will extend well beyond what we know today.

IoT promises to revolutionize the world by connecting billions of microcontroller-based devices with millions of web-
based applications and billions of users in new ways. While driven by many industry participants as the next frontier
or revolution in human existence, there are substantial underlying technologies and costs driving these new
possibilities.

With new IoT modules and systems-on-a-chip (SOC), it is now possible to create connected devices without adding
substantial product costs. Moore’s law ensures that LAN, WiFi and Cellular, Bluetooth and LPAN connection
technologies can be added at low incremental cost. Removing this barrier to entry creates tremendous opportunities
for new products, applications and business models. As in any new industry, initial examples may seem strange (do
we really need a connected refrigerator, thermostat, or car, for example?) but after a while, people around the world
will wonder how they could have lived without them. In the history of electronics and consumer products, we have
seen this time and time again.

As with all technology-based businesses, new products and applications need a technology foundation to build
upon, tools to use, and a supplier infrastructure to provide the components. Eventually each new industry creates its
own framework that incorporates existing technology and new piece parts. While it is difficult to accurately forecast
what the structures and frameworks will be, a safe bet is that IoT will use some key aspects of the current
technology industry applied in new ways, such as:

» Microprocessors and communication chips from the rapidly evolving semiconductor industry where Moore’s law
brings a doubling of capabilities every 18 months. Industry players compete to deliver new chip solutions for
current and potential markets, and IoT is very hot in this industry.

» The Internet with its combination of device-based agents and web servers that today deliver billions of application
uses every day.

» Cloud computing with its ability to seamlessly support applications and computing anywhere in the world, at any
time.

» Connectivity infrastructures such as mobile, wireless and fixed networks that are constantly looking for new ways
to drive revenue.

» Development, design and manufacturing tools needed for the creation of new products and applications.
» New innovations that will end up being catalysts for IoT’s rapid creation and growth. Examples range from

ubiquitous connection technologies, universal device registration/authentication and new unheard of services and
applications.

» Business models for growth providing positive feedback for ease of use and adoption.

2 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

For this to come together there is need for devices, connectivity and application frameworks that are not only good
enough and easy enough to be widely adopted, but low cost as well. The industry needs to evolve from existing
solutions (A.K.A beachheads) that are widely used and deployed today, to provide a foundation for further growth
while addressing key requirements. To that end, IoT needs to:

» Be as simple as turning on a device and logging on to a web site.
» Leverage standard application and web development tools such as Java and HTML/HTML5/JavaScript.
» Make use of existing communications infrastructures such as the Internet and telecom networks (mobile and

wired) in order to support connectivity for billions of devices.
» Make use of existing hardware and software technologies while driving the customization and evolution of them.

This includes leading hardware technologies, software platforms and tools.
» Make use of existing computing infrastructures in order to support the data processing and applications

opportunities for which the Internet of Things will pave the way. This includes scalable distributed cloud computing
and data management solutions, based on flexible deployment scenarios like SaaS, PaaS and IaaS.

The right combination of these existing solutions will help deliver robust implementations in a timely manner, while
avoiding the need to reinvent every aspect of IoT solutions from scratch.

Cloud-Based Internet of Things
Cloud computing can potentially address many of the challenges of IoT. For example, the cloud can:

» Connect millions or billions of devices worldwide
» Handle and host large numbers of cloud based applications that use data from IoT devices
» Facilitate a common data model so that different types of devices can speak a common language and be used by

a wide range of applications for different purposes
» Manage large amounts of data generated by IoT that needs to be processed or stored
» Provide management solutions for IoT devices to handle device problems, connectivity, service and updates
» Create a secure communication and data layer between IoT devices and their applications in an attempt to be

hacker-proof
» Provide tools that make it easy to develop and deploy complete end-to-end IoT solutions that are competitive in

the market place

The Axeda IoT Cloud Platform is a secure and scalable cloud solution to connect, manage and deploy IoT solutions.
Based on years of experience with demanding industrial customers, the cloud-based platform handles all the key
functions of an IoT cloud, such as:

» The basics:
» Connectivity - how to connect via LAN, WiFi, Mobile, protocols, and so on
» Device Management (managing billions of devices without interfering with device use)
» Scalability and deployment
» Data Processing, Management and Storage Business/Consumer Application Support (APIs and Web

Services for easy application access to device data and control of devices)
» The applications and integrations: easy tools and simple IoT application development solutions

» Consumer facing
» Business facing
» Business integration
» Operational integration

3 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

» Device technologies that provide easy ways to create IoT products
» Plug-and-play device support
» Software integration support
» Chip set, SOC and module support
» Support of industry standard development tools

While the basic and application/integration functions are part of the IoT cloud solution, device technologies will
always be supplied by companies specializing in this space. This includes device manufacturers, software vendors
and semiconductor manufacturers. However, the most critical components of the entire IoT infrastructure are the
development tools and environments that simplify and accelerate development of new IoT devices and services.
The world of billions of connected devices requires the ability to develop these in a fast, efficient and competitive
way. Java, the most widely used development language in the world along with Oracle’s Java Virtual Machine, will
play a critical role in enabling IoT devices.

Java and the Internet of Things
Java, born on an embedded device as part of Project Green, is the most widely used development language in the
world with over 9 million developers. Given its ability to run on a wide range of devices—from sensors with limited
CPU and memory to rack mounted servers—no other technology today is better positioned to power an IoT strategy
than Java. Java-powered devices in this ecosystem will communicate with each other, with users, and with the real
world via sensors and relays to gather knowledge and to reason about the world around us in real time.

Oracle Java ME Embedded and Oracle Java SE Embedded are ideally positioned to be the foundation for device
and gateway application development. By using a combination of these VM offerings, Java can be used for IoT
development, end-to-end, from the device to the data center.

Java and Native Development

With Java’s built in just-in-time (JIT) compiler—present in Java SE, Java SE Embedded, and Java ME —Java also
makes for an excellent alternative to native C/C++ embedded development. JIT compilation compiles Java class
files down to machine code, capable of executing as fast as or even faster than compiled C applications. This is
possible due to the Java virtual machine’s (JVM) ability to dynamically optimize the machine code as the application
executes; something statically compiled languages cannot.

With binaries available for many embedded platforms, including ARM, PowerPC, and Intel, Java eliminates the need
to build custom tool chains for native development, and insulates the embedded developer from changes in
hardware platforms as well. Whether you’re moving from development boards to production devices, upgrading your
device hardware, or changing hardware platforms altogether (i.e. from PowerPC to ARM), your Java applications will
continue to work without requiring any changes.

Java ME and the Internet of Things

Java ME is a proven embedded platform with over 15 years of maturity, and is based on a multitasking virtual
machine highly optimized for each of the hardware platforms (i.e., ARM9, ARM11, ARM Cortex-M) it was designed
to run on. Java ME includes support for a wide range of connectivity, including wired and wireless networking and a
variety of peripheral devices, all with low memory and processing requirements.

Overall, Java ME is purpose built to connect embedded devices of all sizes. It enables headless operation, a robust
and secure application environment, and remote software provisioning and management, all built on the industry
standard Java language and VM. This allows you to decouple your application from the multitude of variations of

4 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

hardware and operating systems in the embedded world. With Java ME, you don’t need to worry about tool chains
or related complexities—you just use Java to focus on business value and time to market.

What’s New in Java ME 8

The release of Java ME 8 includes a convergence of both Java SE and Java ME, enabling a more consistent
developer experience and more code and library re-use. This includes Java SE language features such as generics,
assertions, enumerations, autoboxing, and more, as well as a number of popular Java SE APIs such as java.util.*
and Collection classes.

An additional alignment feature is the binary compatibility between Java ME 8 and Java SE 8, meaning that Java
.class and .jar files can now be shared and re-used across Java 8 VMs. Java ME 8 accomplishes this while still
maintaining backward compatibility with earlier versions of Java ME, along with its focus on resource constrained
devices.

Java ME 8 Profile Details

Java ME 8 contains a set of profiles meant to target different classes of devices based on a common range of
capabilities. Optional packages may be added to a profile set to further customize Java ME 8 to your target device’s
use case. Table 1 below describes each profile, along with the packages within, and the footprint in terms of
memory and storage requirements.

TABLE 1: JAVA ME 8 PROFILES AND REQUIREMENTS

Profile Description Storage and Memory Requirements

Java ME Embedded 8 Minimum Profile Set

» Required core APIs
» Application model and packaging

Minimum:

» 128KB RAM (*see note)
» 1MB Storage (i.e. Flash)

Recommended:

» 256KB RAM
» 2MB Storage

Java ME Embedded 8 Standard Profile Set

» MEEP 8 Minimum Profile Set
» Multi-tasking
» Application management
» Shared libraries
» Events
» Enhanced security model
» Optional packages based on use case

Minimum:

» 512KB RAM
» 2MB Storage

Recommended:

» 1MB RAM
» 3MB Storage

Java ME Embedded 8 IMP-NG Profile Set

» MEEP 8 Minimum & Standard Profile Sets
» MIDlet, Wireless messaging, Media, Media Control, RMS,

PDA, Web services, Security & Trust services, Location,
Contactless communication, and XML packages

Minimum:

» 1MB RAM
» 2MB Storage

Java ME 8 Full Profile Set

» MEEP 8 Minimum & Standard Profile Sets
» All optional packages

Minimum:

» 2MB RAM
» 4MB Storage

Note: MEEP 8 Minimal Profile Set, optimized for single- function devices. Actual footprint will vary based on target device and use case.

5 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

Target devices or use cases for each profile include:

TABLE 2: JAVA ME 8 PROFILES AND USE CASES

Profile Target Device / Use Case

Java ME Embedded Profile (MEEP) 8
Minimum Profile Set

Smallest set of smart devices (i.e. sensors,)

MEEP 8 Standard Profile Set Low-end embedded systems, Mid-range microcontroller based
devices, industrial control systems, remote monitoring devices,
network infrastructure, medical devices, automotive, and so on.

Capabilities and footprint increase as optional features are added.

MEEP 8 IMP-NG Profile Set Allows execution legacy Java ME IMP-NG applications.

MEEP 8 Full Profile Set High-end microcontroller based devices, full Java functionality, i.e.
home multimedia controllers/gateways, multi-function printers

End-to-End Connectivity and Enterprise Integration

Each of the Java ME 8 profiles is ideal for a wide range of devices in the Internet of Things. From smart sensors or
meters, to remote communications gateways with complex event processing capability, Java ME offers a good
balance of value and efficiency. Unifying your IoT deployment on Java, end-to-end, simplifies the development and
deployment processes, frees you from hardware fragmentation, updates and changes, and allows you to leverage a
single set of developers and tools.

The Generic Connection Framework (GCF), along with the Wireless Communication and Web Service APIs, allows
Java ME 8 based devices to work seamlessly with cloud-based services. This capability is crucial when deploying
remote devices and infrastructure as part of an IoT solution. For instance, with GCF you get secure, consistent, IP
and IPv6 support with IP multicast, TLS security, reliable modem communication, UDP datagrams, and support for
many protocols including HTTP/HTTPS. The included Access Point API and Cellular API offers support for multiple
network interfaces including cellular communication, allowing you to build secure remote WANs for sensor arrays or
other IoT use cases.

Figure 1. The Enterprise Capabilities of the Axeda IoT Platform

6 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

The Axeda IoT platform, which includes Axeda Agent technology and the Axeda Toolkit for Java ME 8, supports
end-to-end enterprise capabilities using Java EE technology and the Oracle Database. Features include message
queuing for reliable end-to-end data transfer, security based on SSL communication with authentication and
authorization, device and asset management, tracking and monitoring, complex event processing, location services,
and more (see Figure 1 above).

Java SE Embedded 8 and the Internet of Things

Java SE Embedded 8 brings the same Java VM used for desktop and server Java applications to the embedded
world with implementations for x86, ARM, and PowerPC. This includes support for the entire Java SE 8 language
and API set, along with compact profiles to help you tailor the footprint to your embedded environment. You can
choose from one of the pre-defined profiles, and pick and choose from the optional components using tools that are
new in Java SE Embedded 8.

In addition to headless versions, a new embedded version of JavaFX is available for graphical applications such as
kiosks. Other new features include a reduced base Java runtime, a smaller VM, faster VM startup times, Java ME
CDC convergence, Java Flight Recorder, and most of the new features of Java SE 8 such as Nashorn, Lambdas,
and so on. Java Flight Recorder originated from JRockit Flight Recorder as part of the convergence between the
HotSpot and Oracle JRockit JVMs, used to profile Java applications.

Out of the box, there are three Java SE compact profiles to choose from, including:

TABLE 3: AVAILABLE JAVA SE COMPACT PROFILES

Java SE Embedded 8 Compact
Profile Description

Storage and Memory Requirements

Java SE Embedded 8 Compact Profile 1

» Required core APIs
» Logging and SSL included
» Migration path for CDC applications

Minimum:

» 11MB (ARM,PPC), 16MB (x86) Storage

Java SE Embedded 8 Compact Profile 2

» Compact Profile 1
» XML
» JDBC
» RMI

Minimum:

» 15MB (ARM,PPC), 23MB (x86) Storage

Java SE Embedded 8 Compact Profile 3

» Compact Profiles 1 and 2
» Management APIs
» Naming
» Additional security
» Compiler API

Minimum:

» 21MB to (ARM,PPC), 27MB (x86) Storage

Java SE Embedded 8 Full

» Adds all desktop APIs, Web Services,
and CORBA APIs

Minimum:

» 49MB to (ARM,PPC), 97MB (x86) Storage

JavaFX 8 Embedded

» FX Base Graphics
» FX Controls
» Total FX package

Minimum:

» 7.8MB storage
» 2.2MB additional storage
» 20.4MB storage total

7 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

TABLE 4: PACKAGES INCLUDED WITHIN EACH COMPACT PROFILE

Compact1 Compact2 Compact3 Full Java SE

java.io
java.lang
java.lang.annotation
java.lang.invoke
java.lang.ref
java.lang.reflect
java.math
java.net
java.nio
java.nio.channels
java.nio.channels.spi
java.nio.charset
java.nio.charset.spi
java.nio.file
java.nio.file.attribute
java.nio.file.spi
java.security
java.security.cert
java.security.interfaces
java.security.spec
java.text
java.text.spi
java.time
java.time.chrono
java.time.format
java.time.temporal
java.time.zone
java.util
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
java.util.function
java.util.jar
java.util.logging
java.util.regex
java.util.spi
java.util.stream
java.util.zip
javax.crypto
javax.crypto.interfaces
javax.crypto.spec
javax.net
javax.net.ssl
javax.script
javax.security.auth
javax.security.auth.callba
ck
javax.security.auth.login
javax.security.auth.spi
javax.security.auth.x500
javax.security.cert

<Compact1>
java.rmi
java.rmi.activation
java.rmi.dgc
java.rmi.registry
java.rmi.server
java.sql
javax.rmi.ssl
javax.sql
javax.transaction
javax.transaction.xa
javax.xml
javax.xml.datatype
javax.xml.namespace
javax.xml.parsers
javax.xml.stream
javax.xml.stream.events
javax.xml.stream.util
javax.xml.transform
javax.xml.transform.dom
javax.xml.transform.sax
javax.xml.transform.stax
javax.xml.transform.strea
m
javax.xml.validation
javax.xml.xpath
org.w3c.dom
org.w3c.dom.bootstrap
org.w3c.dom.events
org.w3c.dom.ls
org.xml.sax
org.xml.sax.ext
org.xml.sax.helpers

<Compact1 and 2>
java.lang.instrument
java.lang.management
java.security.acl
java.util.prefs
javax.annotation.processing
javax.lang.model
javax.lang.model.element
javax.lang.model.type
javax.lang.model.util
javax.management
javax.management.loading
javax.management.modelmbe
an
javax.management.monitor
javax.management.openmbea
n
javax.management.relation
javax.management.remote
javax.management.remote.rmi
javax.management.timer
javax.naming
javax.naming.directory
javax.naming.event
javax.naming.ldap
javax.naming.spi
javax.security.auth.kerberos
javax.security.sasl
javax.sql.rowset
javax.sql.rowset.serial
javax.sql.rowset.spi
javax.tools
javax.xml.crypto
javax.xml.crypto.dom
javax.xml.crypto.dsig
javax.xml.crypto.dsig.dom
javax.xml.crypto.dsig.keyinfo
javax.xml.crypto.dsig.spec
org.ietf.jgss

<Compact1, 2 and 3>
java.applet
java.awt .**(13 packages)
java.beans
java.beans.beancontext
javax.accessibility
javax.activation
javax.activity
javax.annotation
javax.imageio
javax.imageio.event
javax.imageio.metadata
javax.imageio.plugins.bmp
javax.imageio.plugins.jpeg
javax.imageio.spi
javax.imageio.stream
javax.jws
javax.jws.soap
javax.print
javax.print.attribute
javax.print.attribute.standard
javax.print.event
javax.rmi
javax.rmi.CORBA
javax.sound.midi
javax.sound.midi.spi
javax.sound.sampled
javax.sound.sampled.spi
javax.swing.** (18 packages)
javax.xml.bind
javax.xml.bind.annotation
javax.xml.bind.annotation.adapte
rs
javax.xml.bind.attachment
javax.xml.bind.helpers
javax.xml.bind.util
javax.xml.soap
javax.xml.ws
javax.xml.ws.handler
javax.xml.ws.handler.soap
javax.xml.ws.http
javax.xml.ws.soap
javax.xml.ws.spi
javax.xml.ws.spi.http
javax.xml.ws.wsaddressing
org.omg.** (28 packages)

8 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

Java SE Embedded is meant to bring the power and performance of Java SE for desktop and server applications to
embedded devices that have 32MB or more of RAM, while Java ME targets devices with as little of 128K of RAM.
Java SE Embedded 8 also supports headful embedded applications, including the new JavaFX 8 Embedded GUI
runtime for advanced, accelerated, graphics and animation support. Finally, Java SE Embedded 8 compact profiles
help to tailor the runtime to your environment, and create a migration path for older Java ME CDC applications.

The deciding factors when choosing between Java ME Embedded 8 and Java SE Embedded 8 are mainly RAM and
graphics support. While both runtimes include support for non-x86 based devices (i.e. ARM), Java ME Embedded 8
should be your choice for memory constrained, headless application environments. Java SE Embedded 8 should be
chosen when enough RAM is available, to better unify the development and runtime experience with server-based
Java application development and deployment.

Axeda Java ME 8 Toolkit Library and Agent Solutions
The Axeda Java ME 8 Toolkit Library is designed to provide a simple, yet powerful way to quickly develop IoT
devices using Java ME 8 and connect them to the Axeda IoT cloud. It uses the common domain API model used
across Java 8, and a fluent builder API pattern that aligns well with the Java ME HTTP client. The use of
asynchronous event handling means that the developer does not have to spend time managing threads.

To make I/O connectivity easy to implement, the toolkit library uses the existing Generic Connection Framework to
create Connection APIs that are easy to understand, and also translates specific I/O functions into the IoT data
models that are used by the Axeda IoT platform. Examples include:

» The ability to monitor a Passive Infrared (PIR) sensor connected to GPIO pins and send alarms when value rises
to high.

9 | THE INTELLIGENT INTERNET OF THINGS WITH AXEDA AND JAVA EMBEDDED

» The ability to provide location information.

The Axeda Java ME 8 Toolkit Library allows integration of device logic with IoT platform capabilities, enabling device
specific reactions to commands and data sent from the IoT platform. As an example, the Axeda Toolkit can restrict
files or content downloads to occur only at specified times, controlled by the IoT device status and other conditions.

The Toolkit Library uses Axeda’s Adaptive Machine Messaging Protocol (AMMP), a simple, byte-efficient,
lightweight messaging protocol designed to facilitate machine-to-machine (M2M) communications. With it, you can
build IoT connectivity directly into your product, with the ability to integrate with the Axeda IoT cloud service.

By incorporating critical IoT concepts discussed above, the Axeda Java ME 8 Toolkit library allows for:

» Rapid Development and Deployment of complete end-to-end IoT solutions.
» Simplified use, with examples and sample code, to enable any Java developer to become a successful

embedded developer.
» Support of all relevant IoT use cases with an integrated API and Protocol feature set.
» The creation of secure solutions using encrypted communication.
» Device and application enhancements based on the interaction between devices and the IoT platform, which you

define.

The Axeda Java ME 8 Toolkit can be used to develop robust production ready IoT agents on small footprint devices.

Getting Started with Java and Axeda
Getting started with Java and the Axeda IoT cloud is as easy as going to one web site, www.axeda.com/go-java8,
which has directions for how to download the toolkits and use them to connect to the Axeda IoT cloud platform. This
site also provides quick start examples using platforms like RaspberryPi, Qualcomm GOBI and other preferred
developer prototyping environments. The instructions also refer to the Oracle Java 8 development platform and the
Axeda Developer Platform:

» http://java.oracle.com
» http://developer.axeda.com

Together, these provide complete documentation associated with developing end-to-end applications using Java 8
and the Axeda IoT platform.

Time for the Internet of Things innovation revolution to begin.

http://www.axeda.com/go-java8
http://java.oracle.com/
http://developer.axeda.com/

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0614

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Disclaimer
	The Technical Requirements of the Internet of Things
	Cloud-Based Internet of Things
	Java and the Internet of Things
	Java and Native Development
	Java ME and the Internet of Things
	What’s New in Java ME 8
	Java ME 8 Profile Details
	End-to-End Connectivity and Enterprise Integration

	Java SE Embedded 8 and the Internet of Things

	Axeda Java ME 8 Toolkit Library and Agent Solutions
	Getting Started with Java and Axeda

